Do vaccines reduce the harm of COVID-19 for people living with HIV and people who inject drugs in BC?

the CTN CIHR Canadian HIV Trials Network le Réseau

Réseau canadien pour les essais VIH des IRSC CC PC Contro for

BC Centre for Disease Control

COVAXHIV Study

A measure of how well vaccines work in the real world.

1

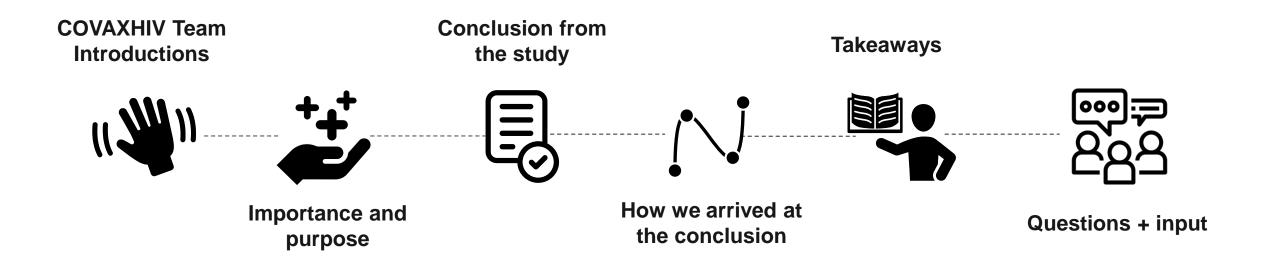
Effectiveness of COVID-19 vaccines in people living with HIV in British Columbia and comparisons with a matched HIV-negative cohort: a test-negative design

Fowokan A, Samji H*, Puyat JH, Janjua NZ, Wilton J, Wong J et al. Effectiveness of COVID-19 vaccines in people living with HIV in British Columbia and comparisons with a matched HIV-negative cohort: a test-negative design. International Journal of Infectious Diseases. 2023;127:162-70.

COVID-19 vaccine effectiveness by HIV status and history of injection drug use

Puyat JH, Wilton J, Fowokan A, Janjua NZ et al. COVID-19 vaccine effectiveness by HIV status and history of injection drug use. Submitted 2023

"In research terms" or "in this study"


<mark>the CTN</mark> CIHR Canadian HIV Trials Network

le Réseau

Réseau canadien pour les essais VIH des IRSC BC Centre for Disease Control

Session Overview

COVAXHIV Team Introductions

the CTN CIHR Canadian HIV Trials Network

le Réseau

Réseau canadien pour les essais VIH des IRSC

BC Centre for Disease Control

Who are we?

AIM 1

AIM 2

HIV-negative.

Aslam Anis Nominated Principal Investigator, National COVAXHIV Study

Provincial Principal Investigators:

To compare the immunogenicity of COVID-19 vaccines among PLWH

to people who are HIV-negative.

To estimate COVID-19 Vaccine

Effectiveness among PLWH compared with people who are

Hasina Samji

Ann N. Burchell

Cecilia T. Costiniuk

le Réseau Réseau canadien pour les essais VIH des IRSC

Who are we?

BRITISH COLUMBIA COVAXHIV Study Team

Aslam Anis

Naveed Janjua

Hasina Samji

Adeleke Fowokan

Joseph Puyat

James Wilton

Jason Wong Troy Grennan Darren Lauscher

Monte Strong

le Réseau Réseau canadien pour les essais VIH des IRSC

Importance and purpose

the CTN CIHR Canadian HIV Trials Network

le Réseau

Réseau canadien pour les essais VIH des IRSC

BC Centre for Disease Control

We wanted to find out...

Vaccine effectiveness (VE)

How well do vaccines protect people living with HIV against COVID-19 infection in the "real world"?

VS

outcome of interest

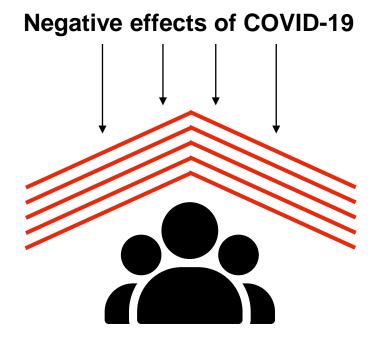
Vaccine efficacy

- How well vaccines work under controlled conditions, such as in a clinical trial.
- May not reflect real world conditions.

Vaccine effectiveness

- How well vaccines work outside of controlled conditions in the real world.
- Can help determine the true impact of vaccines on public health.

le Réseau Réseau canadien pour les essais VIH des IRSC


BC Centre for Disease Contro

Why was this study conducted?

The possibility exists that people living with HIV (PLWH) might be less protected and at higher risk for worse COVID-19 outcomes.

Some PLWH can face intersecting factors that could equal being more vulnerable to COVID-19; potentially lowering the guard of immunity against the outcome of interest; COVID-19 infection.

People living with HIV Living in challenging socioeconomic conditions Injection drug use Multiple comorbidities

the CTN

CIHR Canadian

HV Trials Network

Why don't we already know?

The PLWH population was underrepresented in vaccine trials that determined vaccine approvals. In cases where samples were included, the samples were not representative of the diverse nature of the PLWH population which can include people who inject drugs.

Evidence regarding real-world effectiveness of COVID-19 vaccines in PLWH and PWID remains sparse.

Given the fact we witnessed the rise of new COVID-19 variants, the conclusion from the study can help inform vaccine policies for people living with HIV and people who inject drugs.

le Réseau Réseau canadien pour les essais VIH des IRS

BC Centre for Disease Control

Study Aims and Objectives

AIM 2

To estimate COVID-19 Vaccine Effectiveness among PLWH compared with people who are HIV-negative.

OBJECTIVE 1

To estimate VE of approved vaccines against laboratory-confirmed infection with SARS-CoV-2 and compare VE estimates with a matched HIV-negative cohort.

LIVING WITH HIV & TESTED FOR COVID-19 INFECTION

NOT LIVING WITH HIV & TESTED COVID-19 INFECTION

TEST NEGATIVE DESIGN - comparing the vaccination status of those that tested positive, referred to as cases, versus those that tested negative, referred to as controls.

le Réseau

Réseau canadien

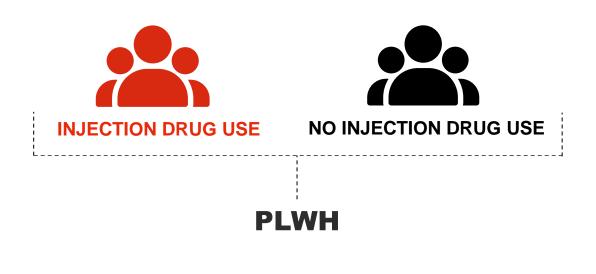
pour les essais VIH des IRSC

the CTN

CIHR Canadian

HIV Trials Network

Importance and purpose


Study Aims and Objectives

AIM 2

To estimate COVID-19 Vaccine Effectiveness among PLWH compared with people who are HIV-negative.

OBJECTIVE 2

To explore differences in VE for PLWH based on injection drug use.

COHORT – a group of people who share one or more characteristics

le Réseau Réseau canadien pour les essais VIH des IRSC

Conclusion from the study

the CTN CIHR Canadian HIV Trials Network

le Réseau

Réseau canadien pour les essais VIH des IRSC

BC Centre for Disease Control

Conclusion

The purpose of a conclusion is to help you, the audience, understand why the research study should matter to you. The purpose of a research study is to discover new information or answer a question about how we learn, behave and function with an end-goal of benefiting a community or society.

Conclusion from the study

Research Study

Conclusion

In general, <u>two doses</u> of vaccine offered substantial protection against COVID-19 infection prior to the emergence of the Omicron variant. Findings may provide reassurance for people living with HIV and their healthcare providers, particularly for those without a history of IDU.

PLWH and people with a history of IDU may experience faster waning of protection which might have implications for timing of booster doses.

The study is not stating that stopping at two doses is recommended; subsequent booster doses in a timely manner are recommended.

le Réseau Réseau canadien pour les essais VIH des IF

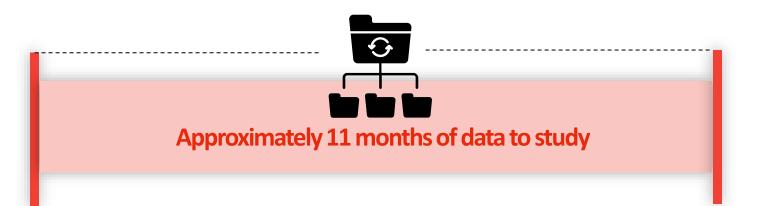
Conclusion from the study

How we arrived at the conclusion

the CTN CIHR Canadian HIV Trials Network

le Réseau

Réseau canadien pour les essais VIH des IRSC



BC Centre for Disease Control

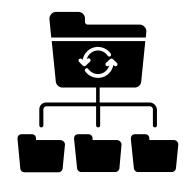
Study period

The duration of time when data is collected from to be studied.

December 15, 2020

COVID-19 vaccines first became available in BC

November 21, 2021


OMICRON period of the pandemic begins

Where did we get the data from?

British Columbia COVID-19 Cohort (BCC19C)

Collaboration between the BCCDC, PHSA, and Ministry of Health

LAB-CONFIRMED CASES

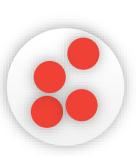
TESTING

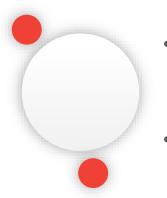
IMMUNIZATIONS PROVINCIAL HEALTH SERVICES DATA

le Réseau Réseau canadien pour les essais VIH des IRSC

Where did we get the data from?

DATASET	DESCRIPTION
Provincial COVID-19 Monitoring Solution (PCMS)	The PCMS data set contains critical care & COVID-19 admission data.
Integrated Lab Dataset for COVID-19	Comprehensive diagnostic laboratory test results from private and public laboratories across British Columbia
COVID-19 Vaccine Database	Contains provincial COVID-19 vaccination data
Medical Services Plan of British Columbia (MSP)	Data on medically necessary services provided by fee-for-service practitioners using ICD-9 diagnostic codes
Chronic Disease Registry (CDR)	The CDR contains records/diagnoses of chronic health conditions for all residents of BC registered for provincial health insurance
Client Roster	The Client Roster represents the best available demographic and geographic information for all BC residents
Discharge Abstract Database (DAD)	The DAD includes demographic, clinical, and administrative records for all hospital inpatient discharges.
National Ambulatory Care Reporting System	NACRS captures information on patient visits to hospital-based and community- based ambulatory care

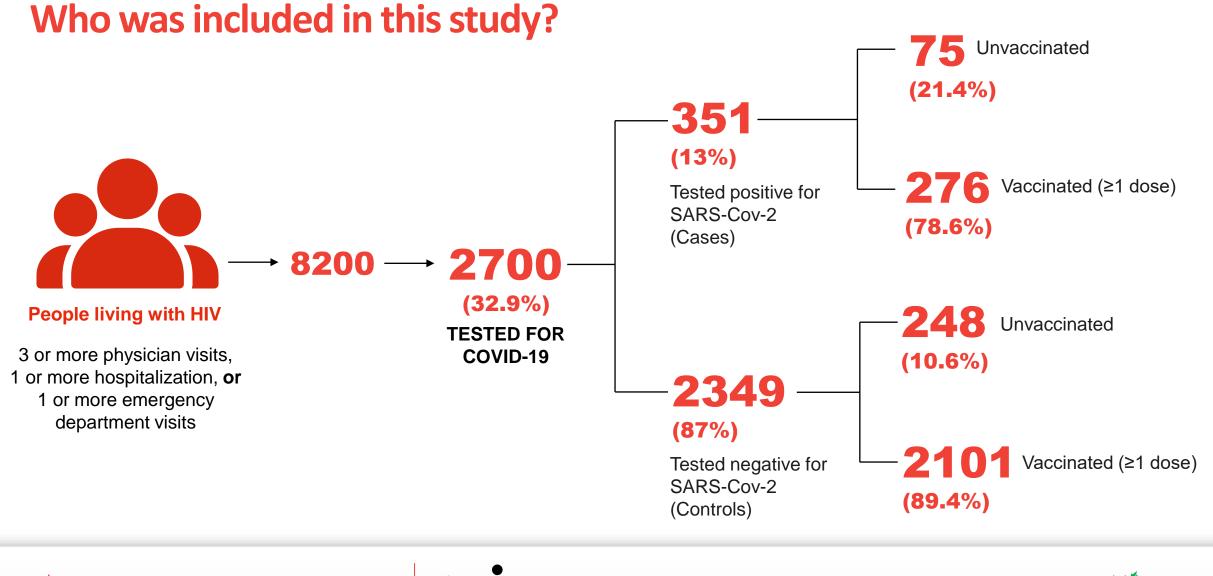



Inclusion and exclusion criteria help researchers identify the study population in a consistent, reliable, and objective manner.

People living with HIV

People's data used in this study is de-identified; meaning no information such as name, address, phone number, email, etc. is disclosed.

- Alive as of December 15, 2020 *
- Aged 19 years or older on December 15, 2020
- BC resident
- Individuals who received non-Health Canada approved COVID-19 vaccine or non-BC vaccine stock
- Records after Nov. 21, 2021 (start of Omicron)


* (when COVID-19 vaccines first became available in BC)

People living with HIV

2700 Received a test for SARS-Cov-2

VE was estimated by comparing...

UNVACCINATED vs VACCINATED

If both are equally likely to get COVID

 $\mathbf{VE} = \mathbf{0\%}$

If none of the vaccinated got COVID VE = 100%

le Réseau Réseau canadien pour les essais VIH des IRSC

People living with HIV

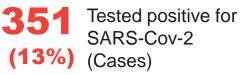
Comparator Group


People not living with HIV

Received a test for SARS-Cov-2

To better understand how COVID-19 vaccines work in PLWH and how this compares to those who do not live with HIV.





Testing rate appears to be higher in the PLWH group (32.9%)

People living with HIV

Testing rate (7.5%)

People not living with HIV

375 043

Received a test for SARS-Cov-2

103 049 (27.5%)

Tested positive for SARS-Cov-2 (Cases)

How did the researchers analyze the data?

Statistical analysis The science of collecting, exploring, and presenting data to discover underlying patterns and trends was used.

Multivariable logistic A mathematical rule, a formula, was applied to estimate VE by comparing the odds, or likelihood, of testing positive for COVID-19, in the vaccinated vs. unvaccinated individuals while accounting for other factors (or confounders/covariates) that may influence the likelihood.

Confounders Variables that may influence likelihood of COVID-19 infection but were not the focus of the study (which was vaccination).

In this study, the variables were age, sex, income based on geographical area, health authority, number of COVID-19 tests 3 months prior to study period, Elixhauser comorbidity index, injection drug use, and bi-weekly testing periods.

Ie Keseau Réseau canadien pour les essais VIH des IRSC

Charact	teristics of Participan	People not living with HIV		
	Study Characteristics	People living with HIV Test Positive (n = 351)	Test Positive (n = 103 049)	
	Mean Age (SD)	48.7 (11.9)	44.8 (17.3)	
	Sex (Female)	127 (36.2%)	51 354 (49.8%)	
	Age			
	19-29	19 (5.4%)	23 447 (22.8%)	
	30-39	68 (19.4%)	22 557 (21.6%)	
	40-49	97 (27.6%)	19 098 (18.5%)	
	50-59	100 (28.5%)	16 810 (16.3%)	
	60-69	51 (14.5%)	11 642 (11.3%)	
	70-79	14 (4.0%)	5 924 (5.8%)	
	≥80	<5	3 871 (3.8%)	

Charact	eristics of Participan	ts People living with HIV	People not living with HIV
	Study Characteristics	Test Positive (n = 351)	Test Positive (n = 103 049)
	Income Quintiles		
	1 (Lowest)	157 (44.7%)	23 361 (22.9%)
	2	60 (17.1%)	21 143 (20.5%)
	3	57 (16.2%)	20 170 (19.6%)
	4	51 (14.5%)	20 389 (19.8%)
	5 (Highest)	26 (7.4%)	17 522 (17.0%)
	Vaccine Doses		••••••
	0	75 (21.4%)	21 153 (20.5%)
	1	26 (7.4%)	6 437 (6.3%)
	2	224 (63.8%)	71 217 (69.1%)
	3	26 (7.4%)	4 242 (4.1%)

Chara	acteristics of Participants	People living with HIV	People not living with HIV
	Study Characteristics	Test Positive (n = 351)	Test Positive (n = 103 049)
	Elixhauser Comorbidity Index		
	0	39 (11.1%)	32 433 (31.5%)
	1	37 (10.5%)	25 722 (25.0%)
	2	58 (16.5%)	16 982 (16.5%)
	3 or more	217 (61.8%)	27 912 (27.1%)
	Health Authority		
	Fraser Health	111 (31.6%)	70 581 (26.0%)
	Interior	23 (6.6%)	19 046 (18.5%)
	Northern	22 (6.3%)	25 976 (9.6%)
	Vancouver Coastal	175 (49.9%)	63 013 (23.2%)
	Vancouver Island	20 (5.7%)	57 540 (21.2%)

Study Characteristics		Test Positive (n= 351)		Positive (n = 103 049)
Persons who inject drugs				
Yes		176 (50.1%)		5 703 (5.5%)
Pandemic Wave Testing Periods				
Wave 2: Dec. 15, 2020 to Feb. 6, 2021		74 (21.1%)		16 886 (16.4%)
Wave 3: Feb. 7, 2021 to Jul. 3, 2021		124 (35.3%)		45 220 (43.9%)
Wave 4: Jul. 4, 2021 to Dec 4, 2021		153 (43.6%)		40 943 (39.7%)

Adjusted VACCINE EFFECTIVENESS estimates against symptomatic infection

(by time since vaccine dose) People living with HIV People not living with HIV People not living with HIV						
STUDY PERIOD (Dec 202 – Nov 2021)		PLWH (n =2700)	Match	ed HIV-negative cohort (n = 375 043)		
	VE (%)		VE (%)			
1 st dose (≥14 days)	49.0	49% is the	54.5			
2 nd dose (7 to 59 days)	71.1	"educated guess"	91.4			
2 nd dose (60 to 89 days)	89.3		89.6			
2 nd dose (90 to 119 days)	80.8		87.5	Waning immunity		
2 nd dose (120 to 179 days)	51.3		84.2			

Adjusted VACCINE EFFECTIVENESS estimates against symptomatic infection

(by time since vaccine dose) People living with HIV People not living with HIV People not living with HIV							
STUDY PERIOD (Dec 202 – Nov 2021)	Ρ	PLWH (n =2700)			Matched HIV-negative cohort (n = 375 043)		
	VE (%)	Lower CI (%)	Upper Cl (%)	VE (%)	Lower CI (%)	Upper CI (%)	
1 st dose (≥14 days)	49.0	-14.6	77.3	54.5	51.0	57.7	
2 nd dose (7 to 59 days)	71.1	39.7	86.1	91.4	90.9	91.8	
2 nd dose (60 to 89 days)	89.3	72.2	95.9	89.6	89.1	90.1	
2 nd dose (90 to 119 days)	80.8	59.3	90.9	87.5	86.9	88.1	
2 nd dose (120 to 179 days)	51.3	4.8	75.0	84.2	83.4	85.0	

Confidence interval A range of estimated values that a particular measurement or statistic is likely to fall within, based on a sample of data.

Adjusted VACCINE EFFECTIVENESS estimates against symptomatic infection (by time since vaccine dose) People living with HIV						
STUDY PERIOD (Dec 202 - Nov 2021)	PLWH + Injection Drug Use (n=176)			PLWH wi	thout history of Inject (n=175)	tion Drug Use
	VE (%)	Lower Cl (%)	Upper CI (%)	VE (%)	Lower CI (%)	Upper Cl (%)
2 nd dose (≥ 7 days*)	65.8	43.5	79.3	80.3	62.7	89.6
2 nd dose (7-59)	65.7	17.9	85.7	80.3	50.9	92.1
2 nd dose (60-89)	91.3	62.3	98.0	85.9	56.8	95.4
2 nd dose (90-119)	65.9	21.6	85.2	88.1	63.6	96.1
2 nd dose (120-179)	42.4	-17.8	71.8	64.0	15.7	84.7

the CTN CIHR Canadian HIV Trials Network

le Réseau

Réseau canadien pour les essais VIH des IRSC CC BC Centr

BC Centre for Disease Control

Key Takeaways

1. COVID-19 vaccine uptake among people living with HIV was similar to the general population up to November 21, 2021.

- 88.0% had at least one dose vs 88.1% in general population
- 81.3% had at least two doses vs 83.7% in general population

2. The prevalence of IDU history (50.1% vs. 5.5%) and history of three or more comorbidities (61.8% vs 27.1%) was substantially higher among PLWH compared to HIV-negative individuals for COVID-19 cases.

Key Takeaways

3. When compared to the HIV-negative cohort, VE estimates appeared to peak later in PLWH than in the matched HIV-negative cohort and the degree of waning was relatively quicker in PLWH.

4. The higher prevalence of IDU among PLWH may partly explain our previously published finding of slower buildup / quicker waning among PLWH overall compared to HIV-negative individuals.

Conclusion

In general, two doses of vaccine offered substantial protection against COVID-19 infection prior to the emergence of the Omicron variant. Findings may provide reassurance for people living with HIV and their healthcare providers, particularly for those without a history of IDU.

PLWH and people with a history of IDU may experience faster waning of protection which might have implications for timing of booster doses.

Acknowledgments

- Public Health Agency of Canada
- COVID-19 Immunity Task Force
- Canadian Institutes for Health Research
- Canadian HIV Trials Network
- Provincial Health Services Authority
- BC Centre for Disease Control
- BC Ministry of Health
- The population of PLWH in BC whose data have been used in this study

BCC19C Acknowledgments

Thank you to the people of British Columbia, whose data are integrated in the BCC19C, and for whom this research is intended to benefit.

Funding

The BCC19C was established and is maintained through operational support from Data Analytics, Reporting and Evaluation (DARE) and the BC Centre for Disease Control (BCCDC) at the Provincial Health Services Authority. The COVAXHIV project is supported by funding from the Public Health Agency of Canada, through the Vaccine Surveillance Reference group and the COVID-19 Immunity Task Force, and the Canadian Institutes for Health Research Canadian HIV Trials Network.

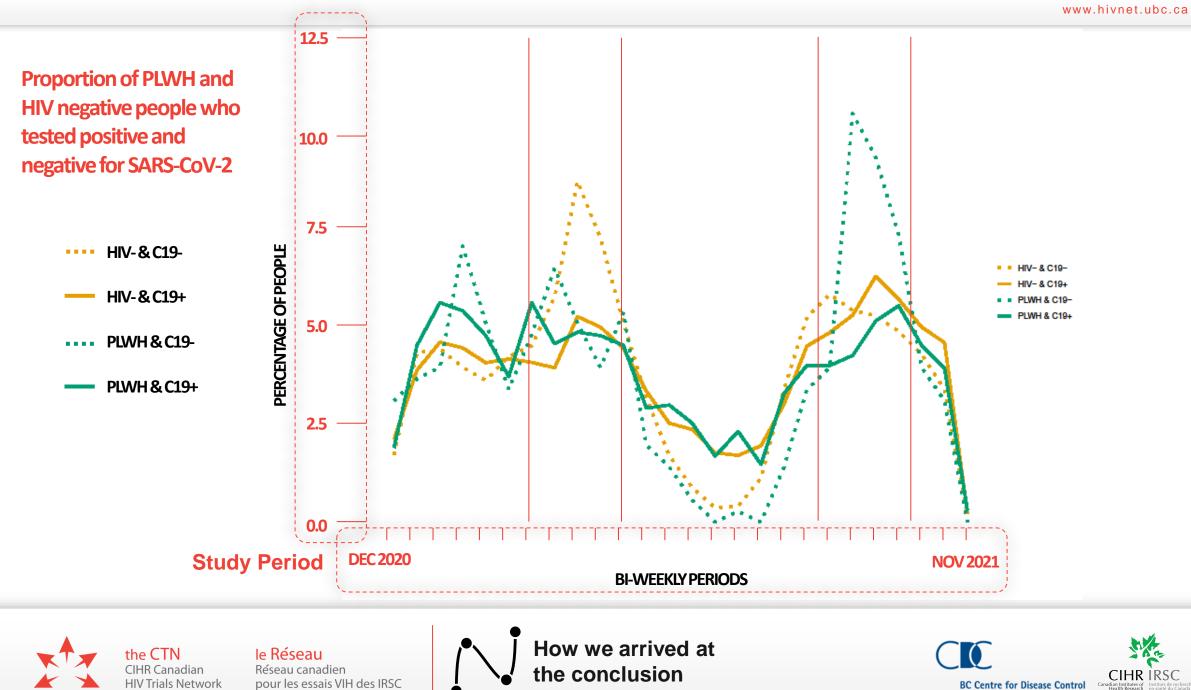
Disclaimer

All inferences, opinions, and conclusions drawn in this presentation are those of the authors, and do not reflect the opinions or policies of the Data Steward(s).

MOH Data citations

- British Columbia Ministry of Health [creator]. Client Roster (Client Registry System/Enterprise Master Patient Index). British Columbia Ministry of Health [publisher]. Data Extract. MOH (2020). 2021. https://www2.gov.bc.ca/gov/content/health/health-forms/online-services
- British Columbia Ministry of Health [creator]. Discharge Abstract Database (Hospital Separations). British Columbia Ministry of Health [publisher]. Data Extract. MOH (2020). 2021. https://www2.gov.bc.ca/gov/content/health/health-forms/online-services
- British Columbia Ministry of Health [creator]. Chronic Disease Registry. British Columbia Ministry of Health [publisher]. Data Extract. MOH (2020). 2020. <u>https://www2.gov.bc.ca/gov/content/health/health-forms/online-services</u>
- British Columbia Ministry of Health [creator]. Medical Services Plan (MSP) Payment Information File. British Columbia Ministry of Health [publisher]. Data Extract. MOH (2020). 2021. <u>https://www2.gov.bc.ca/gov/content/health/health-forms/online-services</u>
- British Columbia Ministry of Health [creator]. National Ambulatory Care Reporting System. British Columbia Ministry of Health [publisher]. Data Extract. MOH (2020). 2021. <u>https://www2.gov.bc.ca/gov/content/health/health-forms/online-services</u>

SUPPLEMENTAL SLIDES


the CTN CIHR Canadian HIV Trials Network

le Réseau

Réseau canadien pour les essais VIH des IRSC C Control

BC Centre for Disease Control

Study Characteristics	Test Positive (n = 351)	Test Negative (n = 2349)
Mean Age (SD)	48.7 (11.9)	50.6 (13.2)
Sex (Female)	127 (36.2%)	646 (27.5%)
Age		
19-29	19 (5.4%)	146 (6.2%)
30-39	68 (19.4%)	393 (16.7%)
40-49	97 (27.6%)	497 (21.2%)
50-59	100 (28.5%)	729 (31.0%)
60-69	51 (14.5%)	414 (17.6%)
70-79	14 (4.0%)	135 (5.8%)
≥80	<5	35 (1.5%)

Study Characteristics	Test Positive (n = 351)	Test Negative (n = 2349)
Income Quintiles		
1 (Lowest)	157 (44.7%)	971 (41.3%)
2	60 (17.1%)	461 (19.6%)
3	57 (16.2%)	421 (17.9%)
4	51 (14.5%)	319 (13.6%)
5 (Highest)	26 (7.4%)	174 (7.4%)
Vaccine Doses		
0	75 (21.4%)	248 (10.6%)
1	26 (7.4%)	155 (6.6%)
2	224 (63.8%)	1549 (65.9%)
3	26 (7.4%)	397 (16.9%)

	Study Characteristics	Test Positive (n = 351)	Test Negative (n = 2349)
	Elixhauser Comorbidity Index		
	0	31 (7.8%)	239 (9.3%)
	1	42 (10.6%)	335 (13.0%)
	2	63 (15.8%)	348 (13.5%)
	3 or more	262 (65.8%)	1659 (64.3%)
V	Health Authority		
	Fraser Health	124 (31.2%)	718 (27.8%)
	Interior	29 (7.3%)	197 (7.6%)
	Northern	25 (6.3%)	81 (3.1%)
	Vancouver Coastal	191 (48.0%)	1333 (51.7%)
	Vancouver Island	29 (7.3%)	250 (9.7%)

Study Characteristics	Test Positive (n= 351)	Test Negative (n = 2349)
Persons who inject drugs		
Yes	176 (50.1%)	922 (39.3%)
Pandemic Wave Testing Periods		
Wave 2: Dec. 15, 2020 to Feb. 6, 2021	74 (21.1%)	467 (19.9%)
Wave 3: Feb. 7, 2021 to Jul. 3, 2021	124 (35.3%)	963 (41.0%)
Wave 4: Jul. 4, 2021 to Dec 4, 2021	153 (43.6%)	919 (39.1%)

